1) преобразование с помощью кодов открытого текста в условный с целью скрыть от противника содержание передаваемой по каналам связи информации. Производится с использованием технических средств или вручную;
2) процесс перевода информации из одной знаковой системы в другую.
дешифрирование
присвоение кода.
присвоение специальных знаков информационным данным с целью скрыть от противника содержание передаваемых по каналам связи распоряжений и донесений при управлении войсками (силами). Для кодирования обычно используются специальные таблицы (коды).
Syn: шифрование, программирование
операция отождествления символов или групп символов одного кода с символами или группами символов другого кода.
ср.
Процесс действия по знач. несов. глаг.: кодировать, кодироваться (1).
процесс записи информации при помощи кода, напр., К. порядка расположения аминокислот в полипептидной цепи последовательностью азотистых оснований нуклеиновой кислоты.
операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Необходимость К. возникает прежде всего из потребности приспособить форму сообщения к данному каналу связи или какому-либо другому устройству, предназначенному для преобразования или хранению информации. Так, сообщения представленные в виде последовательности букв, например русского языка, и цифр, с помощью телеграфных кодов преобразуются в определённые комбинации посылок тока. При вводе в вычислительные устройства обычно пользуются преобразованием числовых данных из десятичной системы счисления в двоичную и т.д. (см. Кодирующее устройство ). К. в информации теории применяют для достижения следующих целей: во-первых, для уменьшения так называемой избыточности сообщений и, во-вторых, для уменьшения влияния помех, искажающих сообщения при передаче по каналам связи (см. Шеннона теорема ). Поэтому выбор нового кода стремятся наиболее удачным образом согласовать со статистической структурой рассматриваемого источника сообщений. В какой-то степени это согласование имеется уже в коде телеграфном , в котором чаще встречающиеся буквы обозначаются более короткими комбинациями точек и тире. Приёмы, применяемые в теории информации для достижения указанного согласования, можно пояснить на примере построения «экономных» двоичных кодов. Пусть канал может передавать только символы 0 и 1, затрачивая на каждый одно и то же время t. Для уменьшения времени передачи (или, что то же самое, увеличения её скорости) целесообразно до передачи кодировать сообщения таким образом, чтобы средняя длина L кодового обозначения была наименьшей. Пусть х1, х2,..., xn обозначают возможные сообщения некоторого источника, a p1, р2,..., р2≈ соответствующие им вероятности. Тогда, как устанавливается в теории информации, при любом способе К., где L ³ Н, (1) ═≈ энтропия источника. Граница для L в формуле (1) может не достигаться. Однако при любых pi существует метод К. (метод Шеннона ≈ Фэно), для которого L £ Н +
(2)
Метод состоит в том, что сообщения располагаются в порядке убывания вероятностей и полученный ряд делится на 2 части с вероятностями, по возможности близкими друг к другу. В качестве 1-го двоичного знака принимают 0 в 1-й части и 1 ≈ во 2-й. Подобным же образом делят пополам каждую из частей и выбирают 2-й двоичный знак и т.д., пока не придут к частям, содержащим только по одному сообщению.
Пример 1. Пусть n = 4 и p1=9/16, р2 = р3 = 3/16, p4= 1/16. Применение метода иллюстрируется табл.:
х,
Pi
Кодовое обозначение
х1
9/16
0
х2
3/16
1
0
х3
3/16
1
1
0
х3
1/16
1
1
1
B данном случае L = ═= 1,688 и можно показать, что никакой др. код не даёт меньшего значения. В то же время Н = 1,623. Всё сказанное применимо и к случаю, когда алфавит нового кода содержит не 2, как предполагалось выше, а m > 2 букв. При этом лишь величина Н в формулах (1) и (2) должна быть заменена величиной H/log2m.
Задача о «сжатии» записи сообщений в данном алфавите (то есть задача об уменьшении избыточности) может быть решена на основе метода Шеннона ≈ Фэно. Действительно, с одной стороны, если сообщения представлены последовательностями букв длины N из м-буквенного алфавита, то их средняя длина LN после К. всегда удовлетворяет неравенству LN ³NH/log2т, где Н ≈ энтропия источника на букву. С другой стороны, при сколь угодно малом e>0 можно добиться выполнения при всех достаточно больших N неравенства
. (3)
С этой целью пользуются К. «блоками»: по данному e выбирают натуральное число s и делят каждое сообщение на равные части ≈ «блоки», содержащие по s букв. Затем эти блоки кодируют методом Шеннона ≈ Фэно в тот же алфавит. Тогда при достаточно больших N будет выполнено неравенство (3). Справедливость этого утверждения легче всего понять, рассматривая случай, когда источником является последовательность независимых символов 0 и 1, появляющихся с вероятностями соответственно р и q, p¹q. Энтропия на блок равна s-кpaтной энтропии на одну букву, т. е. равна sH =s (plog2 1/p+qlog2 1/q). Кодовое обозначение блока требует в среднем не более sH + 1 двоичных знаков. Поэтому для сообщения длины N букв LN£(1+N/s) (sH+1) = N (H+1/s) (1+s/N), что при достаточно больших s и N/s приводит к неравенству (3). При таком К. энтропия на букву приближается к своему максимальному значению ≈ единице, а избыточность ≈ к нулю.
Пример
Пусть источником сообщений является последовательность независимых знаков 0 и 1, в которой вероятность появления нуля равна р = 3/4, а единицы q = 1/4. Здесь энтропия Н на букву равна 0,811, а избыточность ≈ 0,189. Наименьшие блоки (s = 2), то есть 00, 01, 10, 11, имеют соответственно вероятности р2 = 9/16, pq = 3/16, qp = 3/16, q2 =1/16. Применение метода Шеннона ≈ Фэно (см. пример 1) приводит к правилу К.: 00╝0, 01╝10, 10╝110, 11╝111. При этом, например, сообщение 00111000... примет вид 01111100... На каждую букву сообщения в прежней форме приходится в среднем 27/32 = 0,844 буквы в новой форме (при нижней границе коэффициента сжатия, равной Н = 0,811). Энтропия на букву в новой последовательности равна 0,811/0,844 = 0,961, а избыточность равна 0,039.
К., уменьшающее помехи, превратилось в большой раздел теории информации, со своим собственным математическим аппаратом, в значительной мере чисто алгебраическим (см. Канал , Шеннона теорема и литературу при этих статьях).
Ю. В. Прохоров.